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RÉSUMÉ
Les modèles de langue pré-entraînés ont apporté des avancées significatives dans les représentations
contextuelles des phrases et des mots. Cependant, les tâches lexicales restent un défi pour ces représen-
tations en raison des problèmes tels que la faible similarité des representations d’un même mot dans
des contextes similaires (Ethayarajh, 2019). Mosolova et al. (2024) ont montré que l’apprentissage
contrastif supervisé au niveau des tokens permettait d’améliorer les performances sur les tâches
lexicales. Dans cet article, nous étudions la généralisabilité de leurs résultats obtenus en anglais
au français, à d’autres modèles de langue et à plusieurs parties du discours. Nous démontrons que
cette méthode d’apprentissage contrastif améliore systématiquement la performance sur les tâches
de Word-in-Context et surpasse celle des modèles de langage pré-entraînés standards. L’analyse de
l’espace des plongements lexicaux montre que l’affinage des modèles rapproche les exemples ayant
le même sens et éloigne ceux avec des sens différents, ce qui indique une meilleure discrimination
des sens dans l’espace vectoriel final.

ABSTRACT
Enhancing token-level representations in PLMs using contrastive learning : a cross-model and
cross-language study

Pre-trained language models (PLMs) have significantly advanced the contextual representation of
sentences and words. However, lexical-level tasks remain challenging with these representations due
to issues such as low similarity of the same word in similar contexts (Ethayarajh, 2019). Mosolova
et al. (2024) showed improvements on lexical tasks obtained by supervised token-level contrastive
learning. In this paper, we study the generalizability of their findings for English on French, across
other PLMs and parts of speech. We find that this contrastive learning method consistently improves
performance on Word-in-Context tasks, surpassing that of standard PLMs. Further analysis reveals
that fine-tuning results in increased similarity among instances sharing the same sense and greater
dissimilarity among instances with different senses, suggesting improved semantic discrimination in
the embedding space.

MOTS-CLÉS : sémantique lexicale, word-in-context, affinage.
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1 Introduction and Related Work

With the advent of large language models (LLMs), many natural language processing tasks (NLP)
have come closer to being resolved (Grattafiori et al., 2024). Yet, concerning lexical semantics tasks,
LLMs do not offer as astonishing improvements as for text generation tasks. Having an automatic
system to disambiguate the word occurrences of a large corpus remains a challenging task for most
languages, although highly useful for linguistic corpus analysis. Anonymous (2025) report that in
zero-shot setting, LLMs do not surpass supervised systems for Word Sense Disambiguation (WSD),
indicating that high WSD performance still requires annotated data. State-of-the-art methods for WSD
(Guzman Olivares et al., 2025) rely both on labeled data (Babelnet (Navigli & Ponzetto, 2010)), and
on pre-trained language models (PLMs) providing contextualized embeddings. Such embeddings are
also a core part of current work in the unsupervised version of WSD, namely Word Sense Induction
(WSI) (Abdine et al., 2023; Mosolova et al., 2025).

Despite their widespread use for WSD and WSI, contextualized embeddings have also been proven
to be inappropriate per se for lexical semantics. In particular, studies on the Word-in-Context task
(WiC), consisting in predicting whether two context sentences of a lemma share the same sense or
not (Pilehvar & Camacho-Collados, 2019), have shown that original PLM representations fail to
capture senses effectively and perform poorly (accuracy below 66% when using BERT-large). This
inadequacy may stem from the known limitations of contextualized embeddings when it comes to
represent lexical semantics : they show low similarity between the representations of the same word
in different contexts and various biases such as frequency of the word or presence of punctuation
in a sentence, which affect PLMs’ ability to accurately represent word meaning (Ethayarajh, 2019;
Timkey & van Schijndel, 2021; Jiang et al., 2022).

For these reasons, approaches have been proposed to make contextualized embeddings more suitable
for lexical tasks. A common technique is to fine-tune PLMs using contrastive learning, consisting in
using specific loss functions to teach models to bring similar examples (positive examples) closer in
the embeddings space while pushing away the dissimilar ones (negative examples) (Kaya & Bilge,
2019). Importantly, any WSD or WSI system that uses contextualized embeddings can benefit from
such fine-tuned PLMs.

In NLP, contrastive learning was initially applied to enhance sentence representations (Yan et al., 2021;
Gao et al., 2021; Fang et al., 2020), and was later adapted for token-level representations. Previous
works differ in how positive and negative examples are constructed : "self-supervised" approaches
generate positive examples by automatically modifying the original instance, while negative examples
are randomly selected from the rest of the dataset. In this vein, Liu et al. (2021) propose the MirrorWiC
model, which uses random masking of words in the original context surrounding the target word
to create self-supervised positive examples. Abdine et al. (2023) use the denoising autoencoder
BART (Lewis et al., 2020) to generate perturbed versions of the original example, serving as positive
examples.

Supervised approaches, in contrast, create positive examples from instances with the same label,
extracted from some classification dataset. Yamada et al. (2023) use supervised contrastive learning
with the aim of performing semantic frame induction. The positive examples are extracted from
the English Framenet (Baker et al., 1998), as pairs of instances evoking the same semantic frame.
Mosolova et al. (2024) propose to use examplar sentences of word senses from an electronic dictionary
(the English Wiktionary) : positive examples are sets of exemplars of the same sense, while negative
ones are exemplars of different senses of the same lemma. The authors emphasize that this approach



is portable to the many languages for which a large Wiktionary exists.

On top of the WiC task, these works have been evaluated on a range of lexical semantics tasks,
including WSI (Manandhar et al., 2010; Jurgens & Klapaftis, 2013), WSD (Raganato et al., 2017),
Usim (Erk et al., 2013), CoSimLex (Armendariz et al., 2020), and Frame Induction. All have shown
that contrastive learning provides substantial improvements over the original PLMs.

In this paper, we focus on the approach proposed by Mosolova et al. (2024) and test its generalizability
across different model architectures (RoBERTa and ModernBERT on top of BERT), parts of speech
(English nouns and adjectives, on top of verbs), and languages (French on top of English). Additionally,
we analyze changes in the embedding space after fine-tuning, an aspect that was not explored in the
original study.

In the following sections, we present the approach of Mosolova et al. (2024) (Section 2), the
methodology (Section 3), the experimental results (Section 4), and the qualitative analysis of the
embedding space (Section 5), followed by our conclusions (Section 6).

2 Summary of Mosolova et al. (2024) supervised fine-tuning ap-
proach

The goal of study by Mosolova et al. (2024) was to evaluate whether contrastive fine-tuning produces
more semantically meaningful token embeddings, better suited for lexical-level tasks than standard
PLM embeddings. They expected that, during fine-tuning, representations of the same word used in
the same sense will be pulled together, while those having different senses will be pushed further
apart. For this purpose, they employed the multiple-positives contrastive loss for fine-tuning 1. The
loss for one lemma l is defined as :

L(l) =
∑

j∈E(l)

−1

|S(j)|
∑

j′∈S(j)

log
es(j,j

′)/τ∑
k∈E(l)\j

es(j,k)/τ
(1)

Here E(l) is the set of example sentences for lemma l, j is an example sentence within E(l), and
S(j) is the subset of these examples, where the lemma l has the same sense as in example j, except
for j itself. E(l) \ j is the set of all examples of lemma l except j. s(m,n) is the similarity measure
between the embeddings of the target tokens in examples m and n (they use cosine similarity) and τ
is a scalar temperature hyperparameter. Notice that, since the denominator sums over all examples of
lemma l (not only those sharing the same sense), this will mechanically reduce the similarity between
examples of different senses, while increasing the similarity between same-sense examples j and j′.
The term −1

|S(j)| is added to normalize the loss, ensuring that instances with many same-sense pairs
do not contribute disproportionately. This prevents lemmas with a large number of examples from
dominating the overall training objective.

For example, given the target sentence Tu devrais frapper avant d’entrer with the target lemma entrer
and the following supplementary examples : (1) Entrez votre nom d’utilisateur et votre mot de passe,
(2) Il ne peut pas entrer dans le royaume de Dieu, (3) Elle avait prévu d’entrer dans la profession

1. Mosolova et al. (2024) code and English Wiktionary dataset for verbs is available at https://github.com/
anya-bel/contrastive_training

https://github.com/anya-bel/contrastive_training
https://github.com/anya-bel/contrastive_training


juridique, (4) Des inconnus pourraient entrer dans la salle, and (5) Il est entré immédiatement, the
loss function is expected to bring the representation of the target lemma entrer in the target sentence
closer to examples 2, 4, and 5, while pushing it away from examples 1 and 3.

Dataset For their experiments, the authors extracted examples from English Dbnary (Sérasset,
2015). The dataset includes all examples of verbal lemmas with at least 1 and at most 10 senses,
excluding those with only a single sense and a single example, as well as multiword verbs. The dataset
contains 13,118 verbs with a total of 68,271 examples having in total 26,398 senses. Mean number of
examples per sense in the dataset is 2.59(±5.41), mean number of senses per verb is 2.01(±1.54)
and mean number of examples per verb is 5.21(±12.68). The dataset is divided into 3 parts : 80% for
fine-tuning, 10% for development and 10% for testing. We reuse their methodology to create datasets
for English nouns and adjectives, as well as French verbs.

3 Experimental setup

This section details the creation of a dataset for English nouns and adjectives (to test the methodology
on parts of speech other than verbs) and a dataset of French verbs (to test the method on a another
language). Furthermore, we provide details regarding the training process, including the models
evaluated and the hyperparameters used for fine-tuning. Lastly, we discuss the evaluation approach
for the Word-in-Context datasets.

3.1 Fine-tuning datasets

English French
Noun Adjective Verb

Lemmas 50,402 82,263 67,819
Examples 241,065 20,844 17,840

Senses 79,899 30,455 28,018
Avg nb of examples per lemma 3.02(±5.4) 2.28(±3.0) 3.49(±22.97)
Avg nb of examples per sense 2.19(±2.88) 1.81(±1.57) 2.26(±13.52)
Avg nb of senses per lemma 1.38(±1.26) 1.26(±0.96) 1.54(±1.78)

TABLE 1 – Statistics of the full Wiktionary datasets for English nouns and adjectives, and French
verbs. Standard deviations are reported in parentheses.

We create datasets for English nouns, adjectives, and French verbs to fine-tune PLMs using the
contrastive loss described above. Each dataset contains sets of lemma instances labeled with senses,
which are necessary to form positive and negative pairs for the contrastive objective. We use Wiktio-
nary as our source, as it provides freely available, sense-annotated sentences, grouped by meaning for



each word across numerous languages 2. We use Dbnary (Sérasset, 2015) to access Wiktionary data 3

and follow the creation methodology described in the previous section. The statistics of the resulting
datasets for English nouns and adjectives and French verbs are shown in Table 1.

In order to evaluate fine-tuning on all parts of speech, we also made experiments combining the
fine-tuning sets for verbs, nouns and adjectives discussed above, keeping the development and test
splits for each POS.

3.2 Fine-tuning details

We test four English PLMs : the previously evaluated BERT-base-uncased, a larger variant BERT-
large-uncased (Devlin et al., 2019), as well as two models with different pretraining configurations :
RoBERTa-base (Liu et al., 2019) and ModernBERT-base (Warner et al., 2024). For French, we test
CamemBERT-base (Martin et al., 2020) and FlauBERT-base-cased 4 (Le et al., 2020). All models are
used through the transformers library 5 (Wolf et al., 2020).

BERT-base-uncased was fine-tuned on English nouns, adjectives, and the combined dataset including
all parts of speech (All POS), since results for verbs have already been reported. BERT-large,
RoBERTa-base, and ModernBERT-base were fine-tuned on English verbs only, to test the impact of
model size and alternative pretraining configurations. For French, both FlauBERT and CamemBERT
were fine-tuned on verbs, allowing for a direct comparison with English results ; other parts of speech
could be explored in future work. In total, we evaluate eight fine-tuning setups.

We adopt the hyperparameters optimized by Mosolova et al. (2024) for all our experiments : learning
rate = 5e − 6, τ = 0.5, epochs = 2, each batch E(l) contained at most 64 random examples of
one lemma. We also applied Principal Component Analysis (PCA) with whitening to reduce the
embeddings to 100 components, as this has been shown to considerably improve performance. We
use target word embeddings from the PLM’s last layer to compute the similarities s(m,n). If a word
was composed of several subwords, we averaged their embeddings. The average training time for one
epoch with 10, 000 lemmas for a ’-base’ model was approximately 40 minutes on a single 4Gb GPU.

3.3 Evaluation method : the Word-in-Context task

To evaluate the impact of fine-tuning on token-level representations of PLMs, we employ Word-
in-Context (WiC) task introduced by Pilehvar & Camacho-Collados (2019) to provide an intrinsic
evaluation of this fine-tuning. The WiC task consists in predicting whether a target word used in
two sentences has the same meaning in both contexts. For instance, given two French sentences : (1)
Les avions ne peuvent pas voler en ce moment and (2) Quelqu’un a volé mon sac dans le métro, the

2. We acknowledge that Wiktionary senses can be overly fine-grained, and thus that trying to set apart instances of very
close senses might seem counter-intuitive. Nevertheless, Mosolova et al. (2024) showed that fine-tuning still improves the
resulting embedding space. Future work may include a more extensive use of the sense hierarchy in Wiktionary (existing in at
least English and French versions) to assign different weights to negative examples, coming from homonyms (namely different
Dbnary "lexical entries") or from senses of the same entry.

3. For English nouns and adjectives, we use English Dbnary dump of 06/12/2024. For French verbs, we use French Dbnary
dump of 01/03/2024, https://kaiko.getalp.org/about-dbnary/.

4. We tested the ’-cased’ version of FlauBERT to ensure a fair comparison with the CamemBERT-base model, which does
not have an uncased option.

5. For FlauBERT, we implemented target token search, as its tokenizer does not have a ’fast’ version.

https://kaiko.getalp.org/about-dbnary/


model should predict False. We only use the development and test parts of the dataset, as we aim
to evaluate the quality of the embeddings directly, without any additional training on the target task.
To evaluate our models, we adopt an unsupervised approach, using a threshold-based classifier with
cosine similarity measured between the target word embeddings extracted from the PLM’s last layer.
The threshold is tuned on the development set with a step size of 0.02 and reused on the test set.

For the evaluation of English PLMs, we use the original WiC dataset introduced by Pilehvar &
Camacho-Collados (2019), which contains examples of nouns and verbs (hereafter referred to as
En-Orig-WiC). We also reuse the Wikt-WiC and Framenet-WiC datasets from Mosolova et al. (2024)
(referred to as En-Wikt-WiCverb and En-Framenet-WiCverb, respectively). Additionally, we create two
WiC-like datasets from the development and test parts of the nouns and adjectives datasets mentioned
above (En-Wikt-WiCnoun and En-Wikt-WiCadjective, respectively). Both En-Wikt-WiCnoun and
En-Wikt-WiCadjective datasets comprise 2000 entries with 1000 positive and 1000 negative pairs.

For French PLMs, we use the French part of XL-WiC dataset 6 by Raganato et al. (2020) (hereafter
referred to as Fr-XL-WiC) 7. Note we fine-tuned on verbs only, but XL-WiC contains instances of
verbs and also nouns. So we also extracted a WiC verbal dataset from the development and test parts
of the fine-tuning dataset, each containing 1,200 examples with an equal number of positive and
negative examples (Fr-Wikt-WiCverb).

As all the datasets are balanced, we use accuracy as the evaluation metric, following the standard
practice in most WiC tasks. In all figures and tables, we report the average of 5 runs of fine-tuning
along with the standard deviation.

4 WiC Results

For each experiment, we report two baselines : the performance of PLM’s embeddings before
fine-tuning both without and with PCA. We also present the fine-tuning results under these same
conditions.

Generalisation across models : The results of fine-tuning of BERT-large, RoBERTa-base and
ModernBERT-base models on the verbs dataset are presented in Figure 1, together with the results
of ’bert-base’ model from Mosolova et al. (2024) and MirrorWiC model from Liu et al. (2021) for
comparison. Dimensionality reduction using PCA proves beneficial for all models on this task, even
without fine-tuning, and its positive effect is largely maintained after fine-tuning. Fine-tuning itself
improves performance across all models. On the En-Wikt-WiCverb dataset, BERT-base achieves
the best performance among all models before fine-tuning (59.6%). However, after fine-tuning,
other models, particularly BERT-large and ModernBERT-base, show substantial improvements and
outperform BERT-base, with BERT-large reaching the highest accuracy of 75.0%. This is particularly
remarkable considering that all models were fine-tuned using the best hyperparameters reported for
the BERT-base model. On Orig-WiC, RoBERTa-base achieves a new best result in the unsupervised
setting after fine-tuning with PCA. On FrameNet-WiCv, it also obtains a surprisingly strong score
before fine-tuning with PCA (73.9%), which slightly decreases after fine-tuning. In contrast, the other

6. We automatically corrected several span annotation errors in the development and test sets using SpaCy, as some target
words were incorrectly annotated as the last character of the sequence.

7. As this dataset is composed of Wiktionary examples, we removed the overlapping examples from the fine-tuning dataset.



FIGURE 1 – WiC test sets results of fine-tuning on the English verb dataset. ’bert-base’ results are
taken from Mosolova et al. (2024), MirrorWiC results from Liu et al. (2021). base lines are baseline
results before fine-tuning, FT lines are averages of 5 runs (errors bars are std. dev.).

FIGURE 2 – WiC test sets results of bert-base-uncased fine-tuning on the English noun dataset.
base lines are baseline results before fine-tuning, FT lines are averages of 5 runs (errors bars are
std. dev.).

models benefit more consistently from fine-tuning on this dataset. Overall, fine-tuning positively
influences all models, improving their performance on the WiC task by enhancing their ability to
distinguish between same sense and different sense examples. PCA application consistently improves
the models’ performance as well.

Generalisation across POS : Regarding fine-tuning on different parts of speech (’bert-base’ part
of Figure 1 for verbs, Figure 2 for nouns and Figure 3 for adjectives), on the En-Orig-WiC dataset,
the highest improvement is achieved when using only verb data. Results after fine-tuning on nouns
also improve, but are 1% worse than those obtained from verb-only and all-POS fine-tuning (Figure
4). Interestingly, results on the En-Orig-WiC improve after fine-tuning on adjectives as well, despite
adjectives not being present in the development and test sets. This suggests that during fine-tuning,
the entire embedding space changes, not just the targeted lemmas. For the En-Wikt-WiC per POS test
sets, fine-tuning consistently brings clear improvements, achieving the best results when combined
with PCA in all settings. In summary, fine-tuning on verbal examples is more effective, likely due
to the higher polysemy rate of verbs compared to other parts of speech (see Section 3 for details).
When fine-tuning is combined with PCA, it consistently outperforms the original model for all POS.



FIGURE 3 – WiC test sets results of bert-base-uncased fine-tuning on the English adjective dataset.
base lines are baseline results before fine-tuning, FT lines are averages of 5 runs (errors bars are
std. dev.).

FIGURE 4 – WiC test sets results of bert-base-uncased fine-tuning on the English all-POS dataset.
base lines are baseline results before fine-tuning, FT lines are averages of 5 runs (errors bars are
std. dev.).

Additionally, even POS-specific fine-tuning changes the overall structure of the embedding space,
influencing the representations of words beyond the targeted part of speech.

Figure 4 shows the results of fine-tuning on examples from all parts of speech. This fine-tuning further
improves the results on the En-Orig-WiC dataset, pushing the highest accuracy on this dataset to
71.8%. This model also shows the best results on the En-Wikt-WiCnoun and En-Wikt-WiCadjective

test sets, but lower results on the verb-related test set, namely En-Framenet-WiCverb and En-Wikt-
WiCverb. Taking all results into account, fine-tuning on all parts of speech appears to be the best
solution for tasks involving several POS as well as those using a single POS.

Generalization across languages : For the French PLMs (Figure 5), the fine-tuning process showed
an astonishing 10% improvement on both models, with CamemBERT-base performing better on
the Fr-Wikt-WiCverb dataset and FlauBERT on the Fr-XL-WiC dataset. However, the application of
PCA shows inconsistent results, with 5% gain on Fr-Wikt-WiCverb for both models, but decreases of
0.4% and 1.8% on Fr-XL-WiC for FlauBERT and CamemBERT, respectively. These findings show
that fine-tuning on French is as beneficial for this task as fine-tuning on English. Additionally, the
previously observed improvement in the overall embedding space across all parts of speech in English
is present in French as well, given that Fr-XL-WiC includes both verbs and nouns, while fine-tuning
was done using only verbal examples.



FIGURE 5 – WiC test sets results of fine-tuning on the French verb dataset. CamemBERT is
camembert-base, FlauBERT is flaubert-base-cased. base lines are baseline results before fine-tuning,
FT lines are averages of 5 runs (errors bars are std. dev.).

Influence of dimensionality reduction : PCA application is beneficial in all setups for English,
both with and without fine-tuning. However, its effectiveness for French requires additional analysis,
as it demonstrated opposite trends on the Fr-Wikt-WiCverb and Fr-XL-WiC datasets with results
improvements observed only on the former.

Overall, the experiments show that both contrastive fine-tuning and dimensionality reduction enhance
PLMs’ lexical semantics knowledge which generalizes on the entire embedding space, even when
fine-tuning is done on a single part of speech.

5 Modified embedding space analysis

FIGURE 6 – Same-Sense Similarity and Other-Sense Similarity computed before and after fine-tuning
on the bert-base-uncased model on the English verb dataset. The metrics are computed on English
Wiktionary development dataset. Left bars with diagonal and crossed diagonal patterns correspond to
the original model, bars with circles and grid patterns – to the fine-tuned one. The value inside bars
corresponds to the difference between SameSenseSim and OtherSenseSim.

After fine-tuning, we analyzed the qualitative differences between the original and fine-tuned models
using a modified version of the self-similarity metric proposed by Ethayarajh (2019). This metric



FIGURE 7 – Same-Sense Similarity and Other-Sense Similarity computed before and after fine-tuning
on the CamemBERT-base model on the French verb dataset. The metrics are computed on French
Wiktionary development dataset. Left bars with diagonal and crossed diagonal patterns correspond to
the original model, bars with circles and grid patterns – to the fine-tuned one. The value inside bars
corresponds to the difference between SameSenseSim and OtherSenseSim.

assesses the change in target word representations by measuring its similarity in contexts with the
same and different senses :

SenseSim(l) =
1

|LL|
∑
j

LL∑
k ̸=j

cos(fl(sj , ij), fl(sk, ik)) (2)

where s is a sentence where lemma l appears in position i and f is function that maps s[i] to its
representation of the layer l of the model f . LL represents lists of occurrences of the lemma l with
the same and different senses depending if Same Sense similarity (SameSenseSim) or Other Sense
similarity (OtherSenseSim) is measured. We expect the SameSenseSim to increase after fine-tuning,
while the OtherSenseSim should decrease.

We computed both metrics on the English and French Wiktionary development sets for verbs for each
layer of the bert-base-uncased, roberta-base and camembert-base models before and after fine-tuning.
The results for BERT and CamemBERT are presented in Figures 6 and 7 (we put the corresponding
figure and results for RoBERTa in Appendix B).

All figures show considerable changes in the similarities at the PLM’s last layer. In Figure 6, the
difference between the last layer’s SameSenseSim and OtherSenseSim scores reached 0.27 points
after fine-tuning (0.17 in Figure 7 for French). For English, before the 12th layer, both SameSenseSim
and OtherSenseSim increase after fine-tuning, yet the gap between them widens, suggesting that while
fine-tuning brings all representations closer, it also increases the distance between representations of
words used in different senses. The 12th layer shows the largest gap between these two scores as it is
directly involved in loss computation during fine-tuning. As for French, starting from the 9th layer,
SameSenseSim increases after fine-tuning, while OtherSenseSim decreases, and the gap between the
two widens similarly to the BERT-base model.

These observations confirm that fine-tuning has a considerable effect both on French and English
models and reorganizes the last layers of PLMs to better encode sense information.



6 Conclusion

In this paper, we investigated whether the supervised contrastive learning technique proposed by
Mosolova et al. (2024) is extendable across different model sizes, architectures, parts of speech
and languages. Our results demonstrate that fine-tuning with contrastive learning consistently im-
proves performance across all tested configurations, including BERT, RoBERTa, ModernBERT,
CamemBERT, and FlauBERT models, as well as multiple parts of speech 8.

Additionally, we analyzed changes in the embedding space before and after fine-tuning. Our findings
indicate an increase of the difference between same-sense and other-sense similarities, confirming that
fine-tuning helps models better distinguish between different word senses in the embedding space.

Future work could include applying these embeddings to downstream tasks such as Word Sense
Induction (Manandhar et al., 2010), which requires embeddings of the same sense of the same lemma
to be close, as well as Concept Induction (Liétard et al., 2024) and Frame Induction (Yamada et al.,
2023) tasks, which involve grouping similar senses across different lemmas. Another promising
direction would be to exploit additional information from Wiktionary, such as synonyms, antonyms,
and cross-definition links, to construct more positive and negative pairs for contrastive learning.
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A Fine-tuning results on the WiC development sets

In Tables 2, 3, 4, 5 and 6, we show models’ results on the development set of WiC datasets.

B RoBERTa : Embedding space analysis figures

Figure 8 shows the changes of the Same-Sense and Other-Sense similarity scores before and after
fine-tuning of the roberta-base model. In Figure 8, we see that before fine-tuning, RoBERTa’s
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Model FT PCA Orig-WiC Framenet-WiCv Wikt-WiCv

bert-base - - 67.9 70.9 58.0
bert-base - + 69.7 73.9 58.9
bert-base + + 73.5(±0.5) 76.0(±0.2) 64.8(±0.5)

bert-large - - 67.1 69.1 57.2
bert-large - + 69.3 74.5 58.3
bert-large + - 71.8(±0.7) 73.4(±0.4) 66.5(±0.5)
bert-large + + 73.4(±0.5) 75.9(±0.2) 66.3(±0.5)

roberta-base - - 65.0 67.4 55.1
roberta-base - + 68.2 75.4 57.6
roberta-base + - 70.6(±0.5) 72.2(±0.5) 65.9(±0.7)
roberta-base + + 72.8(±0.8) 75.7(±0.2) 66.3(±0.2)

ModernBERT-base - - 64.3 65.2 54.6
ModernBERT-base - + 66.1 73.4 58.4
ModernBERT-base + - 70.7(±0.8) 72.0(±0.5) 66.0(±0.2)
ModernBERT-base + + 72.8(±0.7) 75.4(±0.3) 65.9(±0.3)

MirrorWiC - - 71.9 - -

TABLE 2 – WiC development sets results of fine-tuning on the English verb dataset. ’bert-base’
results are taken from Mosolova et al. (2024), MirrorWiC results from Liu et al. (2021). FT : with or
without fine-tuning, PCA : with or without PCA dimensionality reduction (100 components, with
whitening). The first two lines of each model are baseline results before fine-tuning, last two lines are
averages of 5 runs (std. dev. in parentheses). v subscript indicates a verbs-only dataset.

FT PCA Orig-WiC Wikt-WiCn

- - 67.9 62.2
- + 69.7 62.6
+ - 68.3(±0.8) 64.1(±0.6)
+ + 72.9(±0.7) 67.0(±0.3)

TABLE 3 – WiC development sets results of bert-
base-uncased fine-tuning on the English noun
dataset. FT : with or without fine-tuning, PCA :
with or without PCA dimensionality reduction
(100 components, with whitening). The first two
lines are baseline results before fine-tuning, last
two lines are averages of 5 runs (std. dev. in
parentheses). n subscript indicates a nouns-only
dataset.

FT PCA Orig-WiC Wikt-WiCa

- - 67.9 60.7
- + 69.7 62.3
+ - 69.4(±0.9) 61.8(±0.8)
+ + 71.6(±0.4) 64.8(±0.2)

TABLE 4 – WiC development sets results of bert-
base-uncased fine-tuning on the English adjec-
tive dataset. FT : with or without fine-tuning,
PCA : with or without PCA dimensionality re-
duction (100 components, with whitening). The
first two lines are baseline results before fine-
tuning, last two lines are averages of 5 runs
(std. dev. in parentheses). a subscript indicates
an adjectives-only dataset.

SameSenseSim and OtherSenseSim scores are nearly identical, which explains why this model
performed the poorest on the En-Wikt-WiCverb dataset (see Figure 1). After fine-tuning, the gap
between SameSenseSim and OtherSenseSim widens in the last four layers (0.26 points for the last
layer), confirming the pattern previously observed with the BERT and CamemBERT models.



FT PCA Orig-WiC Framenet-WiCv Wikt-WiCv Wikt-WiCn Wikt-WiCa

- - 67.9 70.9 58.0 62.2 60.7
- + 69.7 73.9 58.9 62.6 62.3
+ - 72.1(±0.5) 69.5(±0.3) 63.9(±0.5) 63.9(±0.5) 61.9(±0.8)
+ + 73.1(±0.6) 75.7(±0.5) 64.9(±0.7) 67.2(±0.3) 65.0(±0.5)

TABLE 5 – WiC development sets results of bert-base-uncased fine-tuning on the English all-POS
dataset. FT : with or without fine-tuning, PCA : with or without PCA dimensionality reduction (100
components, with whitening). The first two lines are baseline results before fine-tuning, last two lines
are averages of 5 runs (std. dev. in parentheses). n, v and a subscripts indicate nouns-only, verbs-only
and adjectives-only datasets, respectively.

Model FT PCA Orig-WiC Wikt-WiCv

CamemBERT - - 62.0 54.8
CamemBERT - + 64.7 56.3
CamemBERT + - 71.6(±0.2) 63.2(±0.5)
CamemBERT + + 71.1(±0.1) 68.2(±0.3)

Model FT PCA Orig-WiC Wikt-WiCv

FlauBERT - - 61.3 54.4
FlauBERT - + 61.7 55.9
FlauBERT + - 71.1(±0.3) 64.4(±1.1)
FlauBERT + + 71.6(±0.2) 67.9(±0.4)

TABLE 6 – WiC development sets results of fine-tuning on the French verb dataset. CamemBERT
is camembert-base, FlauBERT is flaubert-base-cased. FT : with or without fine-tuning, PCA : with
or without PCA dimensionality reduction (100 components, with whitening). The first two lines are
baseline results before fine-tuning, last two lines are averages of 5 runs (std. dev. in parentheses). v
subscript indicates a verbs-only dataset.

FIGURE 8 – Same-Sense Similarity and Other-Sense Similarity computed before and after fine-tuning
on the roberta-base model on the English verb dataset. The metrics are computed on Wiktionary
development dataset. The value inside column corresponds to the difference between SameSenseSim
and OtherSenseSim.
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