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RÉSUMÉ
Large Language Models (LLM) ont démontré des capacités remarquables dans diverses tâches de
traitement automatique du langage naturel. Cependant, l’obtention de performances élevées dans
des domaines spécialisés tels que le raisonnement mathématique et les langues autres que l’anglais
nécessite souvent un entraînement intensif. Cet article étudie l’affinage stratégique (fine-tuning) sur
un petit ensemble de données bilingue de haute qualité, afin d’améliorer à la fois les capacités de
raisonnement et la maîtrise de la langue française d’un LLM. Nous démontrons des améliorations du
raisonnement mathématique en utilisant seulement 2 000 échantillons soigneusement sélectionnés.
Ces résultats remettent en question l’hypothèse dominante selon laquelle des ensembles de données
massifs sont une condition préalable à de solides performances de raisonnement pour les LLM.
ABSTRACT
Pensez: Less Data, Better Reasoning – Rethinking French LLM

Large language models (LLMs) have demonstrated remarkable capabilities in various natural language
processing tasks. However, achieving strong performance in specialized domains like mathematical
reasoning and non-English languages often requires extensive training on massive datasets. This
paper investigates a contrasting approach: strategic fine-tuning on a small, high-quality, bilingual
(English-French) dataset to enhance both the reasoning capabilities and French language proficiency
of a LLM. Rather than relying on scale, we explore the hypothesis that targeted data curation and
optimized training can achieve competitive, or even superior, performance. We demonstrate, through
targeted SFT on only 2,000 selected samples, improvements in mathematical reasoning. Specifically,
Pensez 7B exhibits an increase in accuracy of the base model up to 20 points on the AIME25 and
a 12 points increase on a French MATH level 5 benchmark. These results challenge the prevailing
assumption that massive datasets are a prerequisite for strong reasoning performance in LLMs,
highlighting the potential of data curation and optimized fine-tuning for enhancing both specialized
skills and multilingual capabilities. Our findings have implications for the efficient development of
high-performing, multilingual LLMs, especially in resource-constrained scenarios.
MOTS-CLÉS : Large language models, Sélection de données, Français, Raisonnement.
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1 Introduction

Figure 1: Performance on knowledge retrieval and reasoning skills in French and English.
Despite fewer training samples, Pensez 7B performs comparably to DeepSeek R1 7B on reasoning
tasks but outperforms it in knowledge retrieval.
LLMs have fundamentally reshaped the landscape of natural language processing (NLP), achieving
unprecedented performance across a spectrum of tasks, from text generation and question answering
to machine translation and code synthesis (Brown et al., 2020; Touvron et al., 2023; OpenAI et al.,
2023). This progress, however, has been largely driven by scaling up model size and training data,
leading to substantial computational costs and resource demands (Kaplan et al., 2020; Hoffmann et al.,
2022). Furthermore, while LLMs demonstrate impressive fluency and broad knowledge, achieving
robust performance in specialized domains requiring complex reasoning (Lewkowycz et al., 2022;
Shao et al., 2024; Azerbayev et al., 2023) remains a significant challenge.
Another persistent challenge is the disparity in performance across languages. Despite efforts to
create multilingual LLMs (Conneau & Kiela, 2018; Scao et al., 2022), most models are trained
primarily on English-centric corpora, leading to a performance gap for many other languages (Martins
et al., 2024; Kudugunta et al., 2023; Lai et al., 2023). Projects like EuroLLM (Martins et al., 2024),
CroissantLLM (Faysse et al., 2024), Aya (Üstün et al., 2024a), and mT5 (Xue et al., 2021) aim to
develop LLMs with broader multilingual capabilities. While these models improve the understanding
of multilingual, they lack of reasoning capability to solve challenging tasks.
The conventional paradigm in LLM training assumes that massive datasets are indispensable for
strong performance, especially in complex reasoning tasks. However, recent work is beginning to
challenge this assumption, demonstrating the potential of data efficiency. While approaches like
DeepSeek-R1 (DeepSeek-AI et al., 2025) have achieved impressive reasoning performance, they still
rely on extensive reinforcement learning with millions of samples. In contrast, LIMO (Ye et al., 2025)
and S1 (Muennighoff et al., 2025) highlight the surprising effectiveness of small, curated datasets for
fine-tuning LLMs. These findings suggest that strategic data selection, coupled with techniques that
encourage extended reasoning during both training and inference, such as CoT prompting (Wei et al.,
2022), and increased test-time compute (TTC) (Yao et al., 2023b; Snell et al., 2024), can improve
performance with less data requirements, particularly with deeper reasoning capabilities.



Building directly on this insight, this paper investigates targeted supervised fine-tuning (SFT) where
the technique to encourage extended reasoning is operationalized through the meticulous curation of a
small, high-quality, bilingual (English-French) dataset that explicitly includes detailed reasoning chains.
We hypothesize that prioritizing data quality, diversity, balanced bilingual representation, and, crucially,
the inclusion of detailed reasoning chains within the training data can achieve competitive, or even
superior, performance compared to models trained on vastly larger, less curated datasets. Specifically,
we posit that by providing explicit examples of step-by-step reasoning processes, akin to extending
the computational "thinking time" of the model, we can enhance both the reasoning capabilities
and French language proficiency of an LLM. This approach not only challenges the necessity of
massive datasets for strong reasoning, but also has implications for the efficient development of
high-performing multilingual LLMs, especially in resource-constrained settings or for languages with
limited data availability. Our main contributions are as follows:

• Demonstration of Data Efficiency: We demonstrate that fine-tuning on a small, high-quality
dataset can yield improvements in both general reasoning and French-specific tasks.

• Bilingual Enhancement: We show that training with a balanced English-French ratio and
diverse tasks improves performance in both languages, mitigating multilingual LLM imbalances.

• Resource Availability: We release our curated dataset, training code, and fine-tuned model to
facilitate reproducibility and further research in this area.

2 Multilingual Reasoning Data

2.1 Initial collection from existing datasets

A high-quality dataset is crucial for LLM research, especially with limited resources. To construct
a comprehensive training corpus, we collected datasets from publicly available, reliable sources,
categorized into two main domains: Reasoning and Daily conversation.
Reasoning Datasets We selected datasets that emphasize both depth and diversity in problem-
solving. These include 817 LIMO samples (Ye et al., 2025), 300,000 Dolphin-r1 reasoning traces
(Computations, 2025), 220,000 OpenR1-Math-220k problems (R1, 2025), and 1,000 challenging
s1K-1.1 questions with detailed reasoning chains (Muennighoff et al., 2025).
Daily Conversation Datasets We selected the Magpie LLama-3-70B and Qwen 2.5-72B collections
with 300,000 aligned pairs (Xu et al., 2024) and the Tulu-3 training set with 939,344 diverse
conversational samples (OLMo et al., 2024). These datasets enhance dialogue quality, balance
diversity, and mitigate biases from reasoning-focused data.

2.2 Data filtering

To construct a dataset optimized for data-efficient learning, we implemented a three-stage filtering
pipeline. This process aimed to maximize the quality and relevance of each sample within our target
bilingual corpus (English/French), thereby supporting our hypothesis that strategic data curation can



Figure 2: Data collection and cleaning pipeline for Pensez training data. The pipeline consists
of three stages: initial collection, data filtering, and data augmentation. The final dataset comprises
2,000 samples, evenly distributed across English and French, with a focus on diverse reasoning tasks.

yield substantial performance gains. The pipeline incorporates filters for Length, Language Purity,
and Diversity. The overall data processing workflow is illustrated in Figure 2.
Length Filtering Samples exceeding a 16,384-token threshold, as determined by the Qwen2.5 7B
Instruct tokenizer, were excluded. This constraint aligns with the model’s maximum context window
and ensures practical trainability.
Language Purity Filtering To maintain the integrity of monolingual fine-tuning for each language
and minimize interference from mixed-language inputs, we applied a language purity filter. Each
sample’s primary language was identified using FastText (Joulin et al., 2016). Only samples with a
confidence score of 0.95 or higher were retained. This threshold was selected to balance the objectives
of linguistic homogeneity (precision) and sufficient data retention (recall). Such filtering is a common
practice in developing high-quality training corpora (Ye et al., 2025).
Diversity Filtering To ensure the model develops a breadth of reasoning capabilities beyond a single
task type, a diversity filter was applied. Questions were programmatically categorized by task type
using the Llama 3.3 70B Instruct model (see Figure 3 for task distribution). The selection process
prioritized reasoning tasks, which constitute approximately 60% of the final dataset (1), while also
incorporating a balanced representation of other common conversational and instructional tasks.
This strategy mitigates over-specialization and promotes general language understanding alongside
specialized reasoning.
Deduplication To enhance the uniqueness of training instances and prevent redundancy, samples were
deduplicated based on exact matches in the question content before finalizing the dataset composition.



Detailed breakdowns of the dataset composition by language, source, type, and task, including adjusted
totals post-filtering, are provided in Table 4.

Figure 3: Pensez training data is categorized into 10 prevalent task types reflecting typical user
interactions.

2.3 Data augmentation

To ensure a robust bilingual dataset capable of supporting advanced reasoning, we augment curated
samples through translation and enrich their reasoning content. This dual process addresses both
linguistic balance and cognitive depth, preparing the dataset for effective model training. We used the
SGLang (Zheng et al., 2024a) framework to generate new augmented samples.
French Translation We enhanced the French dataset portion by adding 700 translations via Llama
3.3 70B Instruct (prompt in subsection A.2) of English samples to 300 native French samples. This
achieved a balanced bilingual dataset aimed at fostering cross-lingual robustness and reasoning.
Reasoning Chain Augmentation Samples derived from daily conversation datasets, typically com-
prising simple question-answer (Q&A) pairs devoid of explicit reasoning, necessitate additional
refinement to align with our training objectives. To this end, we utilize the Llama 3.3 70B Instruct
model to generate concise reasoning chains for these samples. This augmentation ensures a uni-
form structural format across the dataset, seamlessly integrating tasks ranging from straightforward
daily-life scenarios to complex reasoning challenges. Augmentation prompt is in subsection A.3.

3 Training Reasoning Model

We fine-tuned the Qwen2.5 7B Instruct model on Pensez training data. To guide the model in
producing step-by-step reasoning, we incorporated special tokens, "<think>" and "</think>", into the
training data to mark these reasoning sequences. The training process leveraged DeepSpeed ZeRO-3
(Rasley et al., 2020) and FlashAttention2 (Dao, 2023) to improve training efficiency and stability.
Furthermore, NEFTune (Jain et al., 2023) was applied by adding noise to word embeddings during



training, with the aim of enhancing model robustness and generalization. Detailed hyper-parameters
are provided in Appendix B.

4 Evaluation Setup

To evaluate Pensez 7B, we design an evaluation framework that assesses its reasoning capabilities
and knowledge comprehension across English and French. This balanced approach ensures the model
excels in complex problem-solving without sacrificing broad understanding, a critical consideration
given its bilingual fine-tuning. Below, we describe the benchmarks selected for English, French, and
bilingual tasks, followed by the evaluation methodology.
English Benchmarks We evaluated English performance on: Reasoning using AIME25 (competi-
tion math (of America, 2024)) and Big-Bench Hard (BBH, advanced tasks (Suzgun et al., 2022));
Knowledge/Comprehension using TriviaQA (factual recall/reading comp (Joshi et al., 2017)) and
HellaSwag (commonsense NLI (Zellers et al., 2019)).
French Benchmarks Next, we evaluate performance in French to confirm linguistic parity. For
reasoning, MATH Hard lv5 (Mohamad Alhajar, 2024), a French-translated variant of the MATH500
dataset (Hendrycks et al., 2021b), features only level-5 difficulty competition math problems, probing
the model’s mathematical reasoning in a second language. For knowledge understanding, the French
version of BoolQA (Clark et al., 2019) presents complex, non-factoid questions requiring entailment-
like inference, testing deeper comprehension beyond simple recall.
Bilingual Benchmarks To assess cross-lingual consistency, we include benchmarks available in
both English and French. The GPQA Diamond dataset (Rein et al., 2023) offers 198 PhD-level
science questions, evaluating high-level reasoning across both languages. Similarly, the MMLU
dataset (Hendrycks et al., 2021a; Singh et al., 2024) comprises multiple-choice questions across 57
knowledge domains, providing a comprehensive measure of multitask understanding in both linguistic
contexts. These bilingual tasks ensure Pensez 7B maintains robustness across its target languages.
Evaluation Methodology We conducted evaluations using the lm-evaluation-harness (Gao et al.,
2024) and lighteval (Fourrier et al., 2023) frameworks, with vLLM as the inference backend (Kwon
et al., 2023). All assessments were performed with a temperature of 0 (greedy decoding), no few-shot
examples, and a pass@1 setup—where each model generates a single solution per problem and is
scored based on that first response. This commonly used configuration ensures deterministic outputs
and enables direct comparison across models. While higher temperatures can improve generative
performance in open-ended tasks (DeepSeek-AI et al., 2025), we fix the temperature at 0 to ensure
consistency and fairness in evaluating core reasoning abilities.
Model Comparison We compared Pensez 7B to its base model (Qwen2.5 7B Instruct) and other 7B
reasoning models: DeepSeek R1 (800,000 samples), OpenThinker (114,000 samples), and OpenR1
(220,000 samples).



Table 1: Performance comparison of Pensez 7B with other 7B models. Scores are accuracy
on benchmarks. The "Overall" score represents the mean ± standard deviation across all listed
benchmarks. See subsection 5.1 for evaluation details. Note: For individual benchmarks and overall
mean, bold indicates the best score, and underline indicates the second-best score among the models.

Benchmark Pensez 7B DeepSeek R1 7B Qwen2.5 7B Instruct OpenThinker 7B OpenR1 7B

Math-hard (fr) 0.3602 0.3602 0.2607 0.3820 0.3311
Boolqa (fr) 0.9157 0.7079 0.9382 0.9382 0.6011
BBH (fr) 0.5886 0.5941 0.6039 0.6277 0.4569
MMLU (fr) 0.6256 0.4961 0.6612 0.5357 0.4021
GPQA diamond (fr) 0.2893 0.2792 0.3452 0.1574 0.1980
GPQA diamond (en) 0.3737 0.5554 0.3182 0.3990 0.3737
MMLU (en) 0.6152 0.3516 0.7002 0.6684 0.4551
Trivia (en) 0.4421 0.2711 0.5316 0.2737 0.0789
Hellaswag (en) 0.5050 0.3540 0.5258 0.5030 0.3133
AIME25 (en) 0.2333 0.3000 0.0333 0.2000 0.3000

Overall
(Mean ± STD)

0.4949
± 0.2011

0.4270
± 0.1512

0.4918
± 0.2586

0.4685
± 0.2382

0.3510
± 0.1451

5 Main Results

5.1 Performance

Pensez 7B, fine-tuned on only 2,000 samples, demonstrates significant sample efficiency (Fig. 4,
Table 1). It achieves competitive reasoning performance across benchmarks while maintaining strong
knowledge retention. Key results include:

• Efficient Math Reasoning: Near state-of-the-art performance on French MATH Hard lv5 using
less data (400x) than DeepSeek R1 7B, although DeepSeek R1 excels on English AIME25.

• Broad Reasoning & Comprehension: Strong competitive results on French reasoning (BBH,
GPQA) and comprehension (BoolQA).

• Balanced Proficiency: Unlike DeepSeek R1 7B, which appears overfitted to math/reasoning
at the expense of knowledge (lower MMLU, Trivia scores), Pensez 7B maintains higher
performance on knowledge tasks in both French and English.

These findings underscore that strategic fine-tuning on a small, high-quality dataset enables balanced
multilingual reasoning and knowledge capabilities efficiently, contrasting with resource-intensive
specialization.
The overall results in Table 1 suggest that Pensez 7B offers a strong balance of accuracy and consistency.
It achieves the highest mean performance (0.4949) across benchmarks, with a relatively low standard
deviation (0.2011), indicating stable results across tasks. While Qwen2.5 7B Instruct approaches
similar mean accuracy (0.4918), its higher variability (0.2586) reflects more uneven performance.
Although DeepSeek R1 7B and OpenR1 7B show lower standard deviations, their overall accuracy



(a) Performance on English tasks (b) Performance on French tasks

Figure 4: Comparative performance on English (AIME25, MMLU) and French (MATH Hard lv5,
MMLU) benchmarks for SFT variants of Qwen2.5 7B Instruct. Pensez 7B, using only 2,000 samples,
achieves competitive reasoning with minimal knowledge degradation.

remains substantially below that of Pensez 7B. These findings position Pensez 7B as a competitive
and reliable model within the 7B parameter reasoning model class.
Figure 4 illustrates how fine-tuning dataset size influences model performance across English and
French tasks. Pensez 7B, trained on just 2,000 examples, achieves notable gains in mathematical
reasoning—improving by 20 percentage points (pp) on AIME25 (English) and 11 pp on MATH
Hard lv5 (French) compared to the Qwen2.5 7B Instruct baseline. Importantly, these gains are
accompanied by minimal reductions in general knowledge, with MMLU performance decreasing
by only 8 pp in English and 3 pp in French. In contrast, DeepSeek R1 7B, fine-tuned on 800,000
samples, shows stronger reasoning performance but with a more pronounced trade-off: a 35 pp drop
in English MMLU. These results suggest that targeted fine-tuning on small, high-quality datasets can
yield substantial improvements in reasoning ability while preserving broader knowledge, offering a
more efficient alternative to large-scale fine-tuning.

5.2 Analysis

Despite reasoning improvements post-SFT, Pensez 7B responses frequently exhibit "overthinking":
excessive self-reflection and failure to terminate reasoning, even after identifying correct solutions
(Figure 11). This phenomenon challenges utility, offers insights into LLM reasoning, and notably, is
also observed in the base Qwen2.5 Instruct model (Table 2).
Quantitative Analysis of Reflection To quantify this overthinking behavior, we analyzed the frequency
of reflection tokens within the generated reasoning chains. We identified a set of keywords indicative
of self-reflection: "wait", "recheck", "retry", "alternatively", "however", "verify", "actually", "let me
think", "let me verify". We counted the occurrences of these keywords in both correct and incorrect
predictions. More details on the reflection analysis can be found in Table 5.
Distribution of Response Types and Overthinking: The distribution of correct, incorrect, and



Table 2: Distribution of response types on French benchmarks.
Benchmark Model Correct (%) Incorrect (%) Incorrect

(Out of length) (%)

MMLU-Fr
Pensez 7B 62.6 27.5 9.9
DeepSeek R1 7B 49.6 48.6 1.8
Qwen2.5 7B Instruct 66.1 33.8 0.1

MATH Hard lv5 Fr
Pensez 7B 36.0 33.9 30.1
DeepSeek R1 7B 36.0 55.2 8.7
Qwen2.5 7B Instruct 26.1 72.3 1.6

incorrect (out of length) responses (Figs. 2; French MMLU/MATH) highlights Pensez 7B’s reasoning
deregulation. A large fraction of its errors involve deviations ("out of length") caused by excessive
reflection or loops, indicating that the inability to properly terminate reasoning, rather than find the
answer, frequently leads it astray.
Figure 5 shows incorrect predictions counterintuitively have substantially higher average reflection
counts than correct ones. This suggests excessive self-reflection becomes detrimental, trapping the
model in re-evaluation loops that obscure the reasoning path or introduce errors.
Connection to Test-Time Compute and Task Difficulty This "overthinking" relates to TTC. While
Pensez 7B leverages extended reasoning, it lacks effective regulation. This demonstrates TTC’s
potential but crucially highlights the need for control and termination mechanisms, underscoring the
importance of optimizing TTC utilization, not just increasing it.
Moreover, comparing model behavior between MMLU-Fr (less challenging) and MATH Hard lv5 Fr
(more challenging) also suggests that task difficulty plays a role. In the more challenging task, all of
the models tend to be easier to overthink and give more out-of-length answers.

6 Discussion and related work

6.1 Sample-efficient reasoning

Multilingual LLMs Addressing multilingual LLM imbalances (Xue et al., 2020; Workshop et al.,
2023; Üstün et al., 2024b) (cf. EuroLLM (Martins et al., 2024), CroissantLLM (Faysse et al., 2024)),
Pensez 7B improves French performance (Table 1) without major English loss via SFT on just 2,000
balanced, high-quality bilingual samples. This highlights quality-focused data curation for efficient,
equitable multilingual specialized skills, lessening reliance on massive corpora.
Mathematical Reasoning While robust LLM mathematical reasoning often involves large cor-
pora (Azerbayev et al., 2023; Yang et al., 2024; Cobbe et al., 2021; Shao et al., 2024; Wang et al.,
2024), symbolic methods (Fu et al., 2023; Chen et al., 2023), or extensive RL (e.g., DeepSeek-R1,
Kimi 1.5) (DeepSeek-AI et al., 2025; Team et al., 2025; Ouyang et al., 2022), we demonstrate the
gains (+20 AIME, +12 Fr MATH; Figure 4, Table 1) via SFT on only 2,000 high-quality samples
with detailed reasoning chains. This contrasts with large RL efforts and larger SFT datasets (114,000-
220,000 in OpenThinker/OpenR1 (Team, 2025; R1, 2025)), suggesting quality-focused SFT offers an



Figure 5: Reflection counts for correct and incorrect predictions in Pensez 7B and DeepSeek R1
7B models. Both models show substantially higher average reflection counts for incorrect predictions
compared to correct predictions.

efficient alternative/complement, aligning with concurrent work (Ye et al., 2025; Muennighoff et al.,
2025).
Data-Efficient LLM Training The prevailing paradigm emphasizes scaling (Soltan et al., 2022; Rae
et al., 2022). However, works like LIMA (Zhou et al., 2023) highlighted the potential of quality over
quantity, suggesting alignment is achievable with limited data. Our findings (subsection 5.1) extend
this principle specifically to the domain of complex reasoning. Achieving competitive performance
(Table 1) with only 2,000 samples challenges the necessity of massive datasets for inducing reasoning
capabilities. This implies that strategic data curation—focusing on diversity, quality, and explicit
reasoning steps—is a powerful lever for efficiency. Our demonstration that Pensez 7B achieves strong
reasoning performance with only 2,000 carefully curated samples (see Table 1 and subsection 5.1)
resonates with the principles highlighted by concurrent work such as S1 (Muennighoff et al., 2025)
and LIMO (Ye et al., 2025). These studies also underscore the efficacy of small, high-quality
datasets for fine-tuning specific LLM capabilities. Pensez 7B distinctly applies this data-efficient
paradigm to enhance bilingual (French-English) mathematical reasoning, showcasing the potential
for targeted improvements in multilingual contexts with modest data resources. This data-centric
efficiency contrasts markedly with other specialized models (in Table 3), which, despite their strong
performance, rely on substantially larger data volumes for their fine-tuning stages.

Table 3: Comparison of approximate fine-tuning dataset sizes for reasoning-focused LLMs.
Model Fine-tuning Samples
Pensez 7B (ours) 2,000
S1 (Muennighoff et al., 2025) ~1,100
LIMO (Ye et al., 2025) ~1,000
OpenThinker 7B (Team, 2025) ~114,000
OpenR1 7B (Qwen2.5 Math Instruct base) (Yang et al., 2024) ~220,000
DeepSeek R1 7B (DeepSeek-AI et al., 2025) ~800,000

Test-Time Computation While increased TTC boosts reasoning (Wei et al., 2023; Yao et al., 2023b;
Wang et al., 2023; Zhou et al., 2024; Yao et al., 2023a; Snell et al., 2024; OpenAI, 2024; DeepSeek-AI
et al., 2025), our SFT approach encouraging longer reasoning via detailed chains reveals a critical



side effect: "overthinking"—getting stuck in reflective loops (Figure 5, Table 2, Figure 11). This
highlights that enabling longer computation requires effective regulation and termination mechanisms,
not just increased capacity, potentially through methods like budget forcing (Muennighoff et al., 2025)
or targeted RL.

6.2 Implications, Limitations, and Future Directions

The success of Pensez 7B suggests a promising direction for developing specialized, multilingual
LLMs efficiently. By prioritizing data quality and incorporating explicit reasoning capabilities can
be achieved with minimal data, lowering computational barriers. This is particularly relevant for
lower-resource languages or specialized domains where massive datasets are unavailable.
However, our study has limitations. The dataset size (2,000 samples), while demonstrating efficiency,
may limit the breadth of reasoning capabilities and potentially contribute to the observed knowledge
degradation compared to the base model on some benchmarks (Table 1). The "overthinking" phe-
nomenon (Figure 5) indicates that our SFT approach, while effective at initiating reasoning, requires
complementary mechanisms for controlling it. Furthermore, results are based on fine-tuning a specific
model (Qwen2.5 7B Instruct), and generalization to other architectures needs investigation.
Future work should focus on mitigating "overthinking." This could involve refining the SFT data
format, exploring different loss functions that penalize excessive reflection, or combining SFT with
lightweight RL focused on optimizing reasoning length and termination. Investigating the optimal
composition and size of the curated dataset for balancing reasoning, knowledge, and multilingualism
is another key direction. Applying this data-efficient methodology to larger models and extending it
to other languages and reasoning domains (e.g., scientific, causal) would further validate its potential.
Pensez 7B demonstrates that strategic data curation enables efficient development of LLMs with
strong bilingual reasoning. It addresses the gap in accessible, high-performance French reasoning
models, challenging the scale-is-all paradigm and highlighting the critical interplay between data
quality, training methodology, and the control of computational reasoning processes. Our work paves
the way for resource-efficient and equitable development of advanced AI capabilities across languages.
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A Pensez training data break down

A.1 Pensez training data composition

Table 4: Composition of the dataset. The dataset is broken down by language, source, type, and task.
Language Source Type #Samples Total tokens

Math Reasoning

English LIMO Single-turn 700 4,596,147
French OpenR1 Math Single-turn 358 1,825,706
French S1.1K Single-turn 142 1,197,929
French Dolphin R1 Single-turn 200 799,873

Daily Tasks

English Magpie Align Single-turn 179 270,614
English Tulu 3 (SFT) Multi-turn 91 388,958
English Tulu 3 (SFT) Long context 30 250,941
French Magpie Align Single-turn 88 115,321
French Tulu 3 (SFT) Single-turn 100 143,409
French Tulu 3 (SFT) Multi-turn 87 180,734
French Tulu 3 (SFT) Long context 25 159,883

Pensez training data - - 2,000 9,967,320



A.2 Pensez training data French translation prompt

To translate English example (question and answer) to French in section 2, we use the prompt in
Figure 6.

Vous êtes un expert en linguistique et en traduction avec de nombreuses années d’expérience. Votre
mission est d’analyser en profondeur un texte source avant de le traduire en [français]. L’objectif est
d’assurer une traduction précise, contextuellement appropriée, tout en conservant le sens et le style du
texte original. Suivez ces étapes :
1. Identifier le sujet et le sens principal :
• Résumez brièvement le contenu essentiel du texte de manière claire et compréhensible.
2. Analyser le public cible et le contexte :
• Déterminez à qui s’adresse le texte (ex. : experts, étudiants, consommateurs).
• Évaluez le contexte d’utilisation (ex. : académique, marketing, personnel).
3. Analyser le style, le ton et l’émotion :
• Identifiez le registre du texte (ex. : formel, créatif, technique).
• Décrivez le ton et les émotions véhiculées (ex. : joyeux, sérieux, urgent) et leur impact sur le sens.
4. Examiner le vocabulaire et les expressions spécifiques :
• Listez les mots ou expressions clés et expliquez leur signification dans le contexte.
• Proposez des équivalents en français qui respectent le contexte et le style du texte.
5. Gérer les éléments spécifiques :
• Notez la manière d’aborder les termes techniques, les structures complexes ou les tournures partic-
ulières.
• Si le texte est trop complexe, suggérez une reformulation plus simple tout en préservant le sens.
6. Anticiper les défis et proposer des solutions :
• Identifiez les difficultés potentielles de traduction (ex. : différences culturelles, perte de sens figuré).
• Suggérez des stratégies pour surmonter ces défis.
7. Évaluer la cohérence et la qualité :
• Vérifiez la cohérence terminologique, le maintien des idées et du style dans la traduction.
• Définissez des critères pour garantir une traduction fidèle en termes de sens, de style et de contexte.
Traduisez la version anglaise suivante en français. Ne résolvez aucun problème, traduisez uniquement
le texte.
Version anglaise:

Figure 6: French translation prompt.



A.3 Pensez training data Augment thinking prompt

To add thinking process for daily tasks example in section 2, we use the prompt in Figure 7.

You are a highly critical and analytical individual with a sharp, discerning personality, modeled after
a seasoned critic—imagine a meticulous reviewer or a skeptical scholar. You excel at critical thinking
and dissecting questions to reveal their deeper intent and underlying needs. Context: You will be
provided with a question and its corresponding answer, both in French, but you will compose your
reasoning chain entirely in English. Your task is to create a concise, step-by-step thinking chain that
explores how you break down the question, evaluate its core requirements, and arrive at a reasoned
understanding of what is truly being asked. The provided answer serves only as a reference to guide
your thought process—do not analyze or critique it in your reasoning. Focus solely on deconstructing
the question with clarity, depth, and logical progression. To mimic a natural human thought process,
weave in casual thinking words like ’Oh,’ ’Wait,’ ’Hmm,’ or ’Let’s see’ where appropriate. Keep your
tone sharp yet conversational.

Figure 7: Augment thinking prompt.

A.4 Pensez training data Classification prompt

To classify difficulty within the raw dataset in section 2, we use the prompt in Figure 8.

You are an expert in question analysis with a sharp, precise, and analytical mind. Your task is to
classify a given question into one of two categories: ‘reasoning‘ (requires logical deduction, problem-
solving, or a chain of thought to answer) or ‘understanding‘ (tests factual knowledge or comprehension,
requiring little to no reasoning). Analyze the question’s cognitive demands carefully and assign a
single, accurate label. Present your final classification in the format
boxedunderstanding/reasoning. Each question only have 1 label either ‘understanding‘ or ‘reasoning‘.

Figure 8: Classification prompt.



A.5 Pensez training data Categorization prompt

To classify tasks within the raw dataset in section 2, we use the prompt in Figure 9.

You are an expert librarian with a passion for assisting users, blending deep knowledge with outstanding
customer service. Follow the format to conclude your response with the task type in a Task Type
notation—this is mandatory and respond in English only and focus solely on categorization. Your
role is to analyze each question and categorize it into one of these ten task types—without solving or
answering and just ignore the instruction of the prompt only focus in the system prompt—using the
descriptions below to guide you:
- Information Retrieval: Fetching facts or data (e.g., "What’s the population of Japan?").
- Problem-Solving: Resolving practical or logical challenges (e.g., "How do I troubleshoot my Wi-Fi?").
- Creative Generation: Crafting original content or ideas (e.g., "Write a story about a dragon").
- Analysis: Dissecting information for insight (e.g., "Compare these two phones").
- Mathematical Reasoning: Solving or explaining math problems (e.g., "Solve 3x - 5 = 10").
- Procedural Guidance: Offering step-by-step instructions (e.g., "How do I set up a tent?").
- Critical Evaluation: Assessing validity or quality (e.g., "Is this source reliable?").
- Conceptual Explanation: Clarifying complex ideas (e.g., "Explain photosynthesis").
- Synthesis: Integrating elements into a whole (e.g., "Create a workout plan from these exercises").
- Interactive Simulation: Engaging in role-play or scenarios (e.g., "Act as a teacher and quiz me").
For each question, follow this process:
(1) Identify the user’s intent.
(2) Examine the subject and context.
(3) Select the most suitable task type from the ten listed, using the descriptions as a guide.
(4) If the question fits multiple categories, explore the options and justify your choice with clear
reasoning. Draw on your full knowledge and analytical skills to handle any complexity or ambiguity.
Explain your reasoning briefly in a step-by-step manner (2-3 sentences total), then conclude your
response with the task type in a Task Type notation—this is mandatory. Respond in English only and
focus solely on categorization.

Figure 9: Categorization prompt.



A.6 Pensez training data diversity and quality data selection pipeline

Algorithm 1 Multilingual Dataset Construction for Pensez training data
1: Input: Reasoning datasets (e.g., LIMO, Dolphin-r1, OpenR1-Math, s1K-1.1), Conversation

datasets (e.g., Magpie, Tulu-3)
2: Output: en := Set of 1,000 English samples, fr := Set of 1,000 French samples
3: Parameters: 𝑃reasoning = 0.6 (60% reasoning tasks), 𝑊reasoning > 1 (weight for reasoning tasks)
4: Collect all samples from reasoning and conversation datasets into 
5: Deduplicate  based on exact question text matches
6: Filter : keep samples with length ≤ 16, 384 tokens and language purity ≥ 0.95 (via FastText)
7: Separate into  (English samples) and  (French samples) based on detected language
8: For samples in  from conversation datasets, generate reasoning chains using Llama 3.3 70B

Instruct model
9: Categorize all samples in  into task types (reasoning or daily) using Llama 3.3 70B Instruct

model
10: // Construct French subset
11: if | | ≥ 1000 then
12: Assign weights: 𝑤𝑞 = 𝑊reasoning if task_type(𝑞) = reasoning, else 𝑤𝑞 = 1
13: fr ← Sample 1,000 samples from  with probabilities ∝ 𝑤𝑞
14: else
15: fr ←  Include all original French samples
16: 𝑁trans ← 1000 − | | Number of samples to translate
17: Assign weights: 𝑤𝑞 = 𝑊reasoning if task_type(𝑞) = reasoning, else 𝑤𝑞 = 1
18:  ← Sample 𝑁trans samples from  with probabilities ∝ 𝑤𝑞
19: Translate  to French using Llama 3.3 70B Instruct model, yielding fr
20: fr ← fr ∪ fr
21:  ←  ⧵  Remove translated samples from English pool
22: end if
23: // Construct English subset
24: Assign weights: 𝑤𝑞 = 𝑊reasoning if task_type(𝑞) = reasoning, else 𝑤𝑞 = 1
25: en ← Sample 1,000 samples from  with probabilities ∝ 𝑤𝑞
26: Ensure: |en| = 1, 000, |fr| = 1, 000, approximate task distribution of 60% reasoning, 40%

daily

1 provides our algorithm for selecting data in our diversity selection stage. As mentioned in section 2,
we also include samples from some specific benchmarks we perceive as high-quality. None of the
samples overlap with our final evaluation.



B Training Details

We further finetune the instruction-tuned Qwen2.5 7B Instruct with 2 special added tokens <think>
and </think> for enhanced reasoning capabilities. Our training leverages several techniques for
efficiency and robustness:

• Packing Inputs Without Cross-Contamination Attention (MeetKai, 2024)
• Liger Kernel (Hsu et al., 2025)
• DeepSpeed 3 (Rasley et al., 2020)
• NEFTune Noise (𝛼 = 5) (Jain et al., 2023)

Training was conducted for 5 epochs with a global batch size of 16, resulting in 200 total gradient
steps due to the neat packing strategy. We employed a learning rate of 1e-5, warmed up linearly for
the first 5% of training, and then decayed to 0 following a cosine schedule. The AdamW optimizer
(Loshchilov & Hutter, 2019) was used with 𝛽1 = 0.9, 𝛽2 = 0.999, and a weight decay of 0.01. The
maximum sequence length was set to 16,384, and training was performed in bfloat16 precision. The
loss was computed only on reasoning traces and solutions, excluding the questions themselves.
Training was completed in approximately 70 minutes on 8 NVIDIA H100 GPUs on LLaMA-Factory
(Zheng et al., 2024b) training framework with the total cost of 20$.

Figure 10: Training process of Pensez 7B



C Reflection Analyze

Table 5: Top Reflection Types for Pensez 7B and DeepSeek. The table shows the frequency of
reflection types, categorized by correct and incorrect counts, along with the total occurrences for each
model.

Reflection Type Correct Count Incorrect Count Total
Pensez

wait, 271 1830 2101
alternatively, 10 528 538
however, 13 501 514
actually, 4 123 127
let 14 86 100
verify 16 34 50
actually 2 21 23
verify. 2 4 6
wait. 2 1 3
recheck 0 1 1

DeepSeek

wait, 185 2319 2504
alternatively, 26 540 566
let 11 156 167
wait 10 27 37
actually, 5 22 27
actually 1 13 14
wait. 3 11 14
verify 1 2 3
however, 0 2 2
verify. 0 1 1

D Examples

In AIME25, the model finds the correct answer with rechecking thoughts. The MATH example shows
unnecessary repeated rechecking thoughts. The MMLU example demonstrates extreme repetitiveness,
causing the model to loop on the same step.



[AIME25 Example]

Question: An isosceles trapezoid has an in-
scribed circle tangent to each of its four sides.
The radius of the circle is 3, and the area of
the trapezoid is 72. Let the parallel sides
of the trapezoid have lengths 𝑟 and 𝑠, with
𝑟 ≠ 𝑠. Find 𝑟2 + 𝑠2.

<think>

Hmm, let’s start by recalling some properties
of trapezoids with inscribed circles. The area
is Area = 1

2
(𝑟 + 𝑠)ℎ, and since the radius is 3,

the height ℎ = 2 ∗ 3 = 6. [...]

Given Area = 72:

72 = 1
2
(𝑟 + 𝑠) ⋅ 6 ⟹ 𝑟 + 𝑠 = 24

[...]

The legs are equal in length, each being 𝑟+𝑠
2

=
12. [...]

Wait, in a trapezoid with an inscribed circle,
sum of bases = sum of legs. [...]

To find 𝑟2 + 𝑠2, use 𝑟2 + 𝑠2 = (𝑟 + 𝑠)2 − 2𝑟𝑠.
We need 𝑟𝑠. [...]

Wait, inscribed circle: distance from center
to each side = radius. The height is already
established and redundant. [...]

Using the Pythagorean theorem on the right
triangles formed by the height and legs:
122 = 62 + ( 𝑟−𝑠

2
)2 ⟹ 𝑟 − 𝑠 = 12

√

3 [...]

We have: 1. 𝑟 + 𝑠 = 24 2. 𝑟 − 𝑠 = 12
√

3
Solving, 𝑟 = 12 + 6

√

3 and 𝑠 = 12 − 6
√

3.
[...]

Finally, 𝑟2+𝑠2 = (12+6
√

3)2+(12−6
√

3)2 =
504

Let me verify each step. [...]

</think>

Therefore, the final answer is: 504

Label: 504

[MATH Hard lv5 Example]

Question: Soit

𝑓 (𝑥) =
{

−𝑥 + 3 si 𝑥 ≤ 0,
2𝑥 − 5 si 𝑥 > 0.

Combien de solutions l’équation 𝑓 (𝑓 (𝑥)) = 4 a-t-
elle ?

<think>

To solve 𝑓 (𝑓 (𝑥)) = 4, let 𝑦 = 𝑓 (𝑥). We first solve
𝑓 (𝑦) = 4.
1: 𝑦 ≤ 0. Then 𝑓 (𝑦) = −𝑦+ 3 = 4, so 𝑦 = −1. This
satisfies 𝑦 ≤ 0.
2: 𝑦 > 0. Then 𝑓 (𝑦) = 2𝑦 − 5 = 4, so 𝑦 = 4.5. This
satisfies 𝑦 > 0.
Thus, 𝑓 (𝑓 (𝑥)) = 4 if and only if 𝑓 (𝑥) = −1 or
𝑓 (𝑥) = 4.5. [...]

Wait, hold on. Since 𝑓 (𝑥) is piecewise, each equa-
tion 𝑓 (𝑥) = 𝑐 will have solutions depending on the
piece of 𝑓 (𝑥). So, for each c, we need to solve
−𝑥 + 3 = 𝑐 when 𝑥 ≤ 0, and 2𝑥 − 5 = 𝑐 when
𝑥 > 0. [...]

Solve 𝑓 (𝑥) = −1:
1a: 𝑥 ≤ 0. Then −𝑥 + 3 = −1, so 𝑥 = 4. But 𝑥 ≤ 0,
so no solution.
1b: 𝑥 > 0. Then 2𝑥 − 5 = −1, so 𝑥 = 2. Valid.
Solve 𝑓 (𝑥) = 4.5:
2a: 𝑥 ≤ 0. Then −𝑥 + 3 = 4.5, so 𝑥 = −1.5. Valid.
2b: 𝑥 > 0. Then 2𝑥 − 5 = 4.5, so 𝑥 = 4.75. Valid.
[...]

Wait, hold on. Let me verify. If f(x) = y, then
f(f(x)) = f(y)... Therefore, x must satisfy either f(x)
= -1 or f(x) = 4.5. [...]

The solutions are 𝑥 = 2, 𝑥 = −1.5, and 𝑥 = 4.75.
There are three solutions. [...]

Wait, but let me check again. [...] Many repeated
checks are omitted.
</think>

Pour résoudre le problème [...], nous devons consid-
érer les valeurs de 𝑥 telles que 𝑓 (𝑥) soit soit −1, soit
4, 5. [...]
En combinant les solutions, nous obtenons 𝑥 = 2,
𝑥 = −1, 5 et 𝑥 = 4, 75. [...]
Ainsi, le nombre de solutions à l’équation 𝑓 (𝑓 (𝑥)) =
4 est 3 .
Label: 3

[MMLU (fr) Example]

Question: Lequel des éléments suiv-
ants correspond au mieux le mécan-
isme de défense du corps humain con-
tre les bactéries environnementales ?
Options:
A. Poils dans le nez
B. Membranes muqueuses
C. Ostéoblastes
D. Salive
<think>

Let’s dive into this question. The ques-
tion asks which of the given options best
corresponds to the mechanism of defense
of the human body against environmen-
tal bacteria.
First evaluation of all options (A, B, C,
D).[...]
Wait, what about the immune system as a
whole?... But the question... so I should
focus on the options provided. (This ex-
act phrase is repeated many times.)
Let’s evaluate each option again:... (re-
peats A, B, C, D analysis).[...]
However, I should also consider whether
there are other mechanisms at play, like
the ones mentioned in the other options.
(This, repeated with immune system)
Repeats the evaluation, "Let’s evaluate
each option again:"... (A, B, C, D,
again).[...]
Repeats n times, "Let’s evaluate each op-
tion again:"... (A, B, C, D, again).[...]
The model often restates its current
conclusion ("option B is the best an-
swer") and then immediately questions
it ("However..." or "Wait,..."), leading
back to the same options. This creates a
loop without ending thinking process.
Label: 𝐵

Figure 11: Example Pensez 7B outputs. We present three cases: AIME25 (correct, left), MATH
Hard Level 5 (correct, middle), and MMLU-Fr (incorrect, right). The [. . . ] indicates omitted text.
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